Lab 1a. Species Distribution Modeling - Exploratory Data Analysis

Learning Objectives

1 Overview

This lab will introduce you to machine learning by predicting presence of a species of you choosing from observations and environmental data. We will largely follow guidance found at Species distribution modeling | R Spatial using slightly newer R packages and functions.

2 Explore

This first part of the lab involves fetching data for your species of interest, whether terrestrial or marine.

2.1 Install Packages

You’ll need to have the following R Software installed:

You’re also encouraged to use git to version your code, ideally in a Github repository.

You’ll use the librarian::shelf() function to load required software packages, installing them if needed.

# load packages, installing if missing
if (!require(librarian)){
  install.packages("librarian")
  library(librarian)
}
librarian::shelf(
  dismo, dplyr, DT, ggplot2, here, htmltools, leaflet, mapview, purrr, raster, readr, rgbif, rgdal, rJava, sdmpredictors, sf, spocc, tidyr)
select <- dplyr::select # overwrite raster::select
options(readr.show_col_types = FALSE)

# set random seed for reproducibility
set.seed(42)

# directory to store data
dir_data <- here("data/sdm")
dir.create(dir_data, showWarnings = F, recursive = T)

If you have a problem installing the rJava package like so:

Please install the Java Virtual Machine (JVM) for your operating system by visiting these links:

If you’re on a new Mac with the M1 processor, you might need to install the latest ARM 64-bit dmg for macOS from Azul Downloads (e.g. zulu17.30.15-ca-jdk17.0.1-macosx_aarch64.dmg).

2.2 Choose a Species

Please enter your species of choice for this lab here:

Be sure to check nobody already chose this species here:

I also highly recommend choosing a species with at least 100 occurrences (try code below first). You can edit your choice through the form.

2.3 Get Species Observations

For illustrative purposes, I’ll choose the Brown-throated sloth (Bradypus variegatus) since we’re going to start slow with Machine Learning.

obs_csv <- file.path(dir_data, "obs.csv")
obs_geo <- file.path(dir_data, "obs.geojson")
redo    <- FALSE

if (!file.exists(obs_geo) | redo){
  # get species occurrence data from GBIF with coordinates
  (res <- spocc::occ(
    query = 'Bradypus variegatus', 
    from = 'gbif', has_coords = T))
  
  # extract data frame from result
  df <- res$gbif$data[[1]] 
  readr::write_csv(df, obs_csv)
  
  # convert to points of observation from lon/lat columns in data frame
  obs <- df %>% 
    sf::st_as_sf(
      coords = c("longitude", "latitude"),
      crs = st_crs(4326)) %>% 
    select(prov, key) # save space (joinable from obs_csv)
  sf::write_sf(obs, obs_geo, delete_dsn=T)
}
obs <- sf::read_sf(obs_geo)
nrow(obs) # number of rows
[1] 500
# show points on map
mapview::mapview(obs, map.types = "Stamen.Terrain")

2.4 Get Environmental Data

Next, you’ll use the Species Distribution Model predictors R package sdmpredictors to get underlying environmental data for your observations. First you’ll get underlying environmental data for predicting the niche on the species observations. Then you’ll generate pseudo-absence points with which to sample the environment. The model will differentiate the environment of the presence points from the pseudo-absence points.

2.4.1 Presence

dir_env <- file.path(dir_data, "env")

# set a default data directory
options(sdmpredictors_datadir = dir_env)

# choosing terrestrial
env_datasets <- sdmpredictors::list_datasets(terrestrial = TRUE, marine = FALSE)

# show table of datasets
env_datasets %>% 
  select(dataset_code, description, citation) %>% 
  DT::datatable()
# choose datasets for a vector
env_datasets_vec <- c("WorldClim", "ENVIREM")

# get layers
env_layers <- sdmpredictors::list_layers(env_datasets_vec)
DT::datatable(env_layers)
# choose layers after some inspection and perhaps consulting literature
env_layers_vec <- c("WC_alt", "WC_bio1", "WC_bio2", "ER_tri", "ER_topoWet")

# get layers
env_stack <- load_layers(env_layers_vec)

# interactive plot layers, hiding all but first (select others)
# mapview(env_stack, hide = T) # makes the html too big for Github
plot(env_stack, nc=2)

Notice how the extent is currently global for the layers. Let’s crop the environmental rasters to a reasonable study area around our species observations.

obs_hull_geo  <- file.path(dir_data, "obs_hull.geojson")
env_stack_grd <- file.path(dir_data, "env_stack.grd")

if (!file.exists(obs_hull_geo) | redo){
  # make convex hull around points of observation
  obs_hull <- sf::st_convex_hull(st_union(obs))
  
  # save obs hull
  write_sf(obs_hull, obs_hull_geo)
}
obs_hull <- read_sf(obs_hull_geo)

# show points on map
mapview(
  list(obs, obs_hull))
if (!file.exists(env_stack_grd) | redo){
  obs_hull_sp <- sf::as_Spatial(obs_hull)
  env_stack <- raster::mask(env_stack, obs_hull_sp) %>% 
    raster::crop(extent(obs_hull_sp))
  writeRaster(env_stack, env_stack_grd, overwrite=T)  
}
env_stack <- stack(env_stack_grd)

# show map
# mapview(obs) + 
#   mapview(env_stack, hide = T) # makes html too big for Github
plot(env_stack, nc=2)

2.4.2 Pseudo-Absence

absence_geo <- file.path(dir_data, "absence.geojson")
pts_geo     <- file.path(dir_data, "pts.geojson")
pts_env_csv <- file.path(dir_data, "pts_env.csv")

if (!file.exists(absence_geo) | redo){
  # get raster count of observations
  r_obs <- rasterize(
    sf::as_Spatial(obs), env_stack[[1]], field=1, fun='count')
  
  # show map
  # mapview(obs) + 
  #   mapview(r_obs)
  
  # create mask for 
  r_mask <- mask(env_stack[[1]] > -Inf, r_obs, inverse=T)
  
  # generate random points inside mask
  absence <- dismo::randomPoints(r_mask, nrow(obs)) %>% 
    as_tibble() %>% 
    st_as_sf(coords = c("x", "y"), crs = 4326)
  
  write_sf(absence, absence_geo, delete_dsn=T)
}
absence <- read_sf(absence_geo)

# show map of presence, ie obs, and absence
mapview(obs, col.regions = "green") + 
  mapview(absence, col.regions = "gray")
if (!file.exists(pts_env_csv) | redo){

  # combine presence and absence into single set of labeled points 
  pts <- rbind(
    obs %>% 
      mutate(
        present = 1) %>% 
      select(present, key),
    absence %>% 
      mutate(
        present = 0,
        key     = NA)) %>% 
    mutate(
      ID = 1:n()) %>% 
    relocate(ID)
  write_sf(pts, pts_geo, delete_dsn=T)

  # extract raster values for points
  pts_env <- raster::extract(env_stack, as_Spatial(pts), df=TRUE) %>% 
    tibble() %>% 
    # join present and geometry columns to raster value results for points
    left_join(
      pts %>% 
        select(ID, present),
      by = "ID") %>% 
    relocate(present, .after = ID) %>% 
    # extract lon, lat as single columns
    mutate(
      #present = factor(present),
      lon = st_coordinates(geometry)[,1],
      lat = st_coordinates(geometry)[,2]) %>% 
    select(-geometry)
  write_csv(pts_env, pts_env_csv)
}
pts_env <- read_csv(pts_env_csv)

pts_env %>% 
  # show first 10 presence, last 10 absence
  slice(c(1:10, (nrow(pts_env)-9):nrow(pts_env))) %>% 
  DT::datatable(
    rownames = F,
    options = list(
      dom = "t",
      pageLength = 20))

In the end this table is the data that feeds into our species distribution model (y ~ X), where:

2.5 Term Plots

In the vein of exploratory data analyses, before going into modeling let’s look at the data. Specifically, let’s look at how obviously differentiated is the presence versus absence for each predictor – a more pronounced presence peak should make for a more confident model. A plot for a specific predictor and response is called a “term plot”. In this case we’ll look for predictors where the presence (present = 1) occupies a distinct “niche” from the background absence points (present = 0).

pts_env %>% 
  select(-ID) %>% 
  mutate(
    present = factor(present)) %>% 
  pivot_longer(-present) %>% 
  ggplot() +
  geom_density(aes(x = value, fill = present)) + 
  scale_fill_manual(values = alpha(c("gray", "green"), 0.5)) +
  scale_x_continuous(expand=c(0,0)) +
  scale_y_continuous(expand=c(0,0)) +
  theme_bw() + 
  facet_wrap(~name, scales = "free") +
  theme(
    legend.position = c(1, 0),
    legend.justification = c(1, 0))