geom_point
# data()
# ?mpg
#mpg
ggplot(data = mpg, aes(x = displ, y = hwy)) +
geom_point()
color
!ggplot(data = mpg, aes(x = displ, y = hwy, color=class)) +
geom_point()
shape
: need a b&w figureChanged color
to shape
:
ggplot(data = mpg, aes(x = displ, y = hwy, shape=class)) +
geom_point()
## Warning: The shape palette can deal with a maximum of 6 discrete values
## because more than 6 becomes difficult to discriminate; you have 7.
## Consider specifying shapes manually if you must have them.
## Warning: Removed 62 rows containing missing values (geom_point).
size
#?mpg
ggplot(data = mpg, aes(x = cty, y = hwy, size = class, color = fl)) +
geom_point(alpha = 0.2)
## Warning: Using size for a discrete variable is not advised.
#?mpg
ggplot(data = mpg, aes(x = cty, y = hwy, size = class)) +
geom_point(alpha = 0.2, color = "blue")
## Warning: Using size for a discrete variable is not advised.
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy), color = "blue")
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy, color = displ < 5))
ggplot(mpg, aes(x = drv, y = hwy)) +
geom_violin()
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy)) +
geom_smooth(aes(x = displ, y = hwy))
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
?geom_smooth
ggplot(data = mpg, aes(x = displ, y = hwy))+
geom_point() +
geom_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth() +
labs(title = "Relationship b/w engine size & MPG",
x = "Highway MPG",
y = "Engine displacement (liters)") +
theme_bw() +
theme(text = element_text(size = 16))
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
gapminder <- readr::read_csv('https://raw.githubusercontent.com/jules32/2017-11-30-MBARI/gh-pages/data/gapminder.csv')
## Parsed with column specification:
## cols(
## country = col_character(),
## year = col_integer(),
## pop = col_double(),
## continent = col_character(),
## lifeExp = col_double(),
## gdpPercap = col_double()
## )
y <- gapminder %>%
filter(country == "Sweden") %>%
summarize(
mean_lifeExp = mean(lifeExp))
y
## # A tibble: 1 x 1
## mean_lifeExp
## <dbl>
## 1 76.177
gapminder %>%
filter(country == c("Egypt", "Vietnam"))
## # A tibble: 12 x 6
## country year pop continent lifeExp gdpPercap
## <chr> <int> <dbl> <chr> <dbl> <dbl>
## 1 Egypt 1952 22223309 Africa 41.893 1418.8224
## 2 Egypt 1962 28173309 Africa 46.992 1693.3359
## 3 Egypt 1972 34807417 Africa 51.137 2024.0081
## 4 Egypt 1982 45681811 Africa 56.006 3503.7296
## 5 Egypt 1992 59402198 Africa 63.674 3794.7552
## 6 Egypt 2002 73312559 Africa 69.806 4754.6044
## 7 Vietnam 1957 28998543 Asia 42.887 676.2854
## 8 Vietnam 1967 39463910 Asia 47.838 637.1233
## 9 Vietnam 1977 50533506 Asia 55.764 713.5371
## 10 Vietnam 1987 62826491 Asia 62.820 820.7994
## 11 Vietnam 1997 76048996 Asia 70.672 1385.8968
## 12 Vietnam 2007 85262356 Asia 74.249 2441.5764
gapminder %>%
filter(country %in% c("Egypt", "Vietnam"))
## # A tibble: 24 x 6
## country year pop continent lifeExp gdpPercap
## <chr> <int> <dbl> <chr> <dbl> <dbl>
## 1 Egypt 1952 22223309 Africa 41.893 1418.822
## 2 Egypt 1957 25009741 Africa 44.444 1458.915
## 3 Egypt 1962 28173309 Africa 46.992 1693.336
## 4 Egypt 1967 31681188 Africa 49.293 1814.881
## 5 Egypt 1972 34807417 Africa 51.137 2024.008
## 6 Egypt 1977 38783863 Africa 53.319 2785.494
## 7 Egypt 1982 45681811 Africa 56.006 3503.730
## 8 Egypt 1987 52799062 Africa 59.797 3885.461
## 9 Egypt 1992 59402198 Africa 63.674 3794.755
## 10 Egypt 1997 66134291 Africa 67.217 4173.182
## # ... with 14 more rows
# find max gdpPercap of Egypt and Vienam
gapminder %>%
group_by(country) %>%
filter(
country %in% c("Egypt", "Vietnam"),
gdpPercap == max(gdpPercap))
## # A tibble: 2 x 6
## # Groups: country [2]
## country year pop continent lifeExp gdpPercap
## <chr> <int> <dbl> <chr> <dbl> <dbl>
## 1 Egypt 2007 80264543 Africa 71.338 5581.181
## 2 Vietnam 2007 85262356 Asia 74.249 2441.576